Physics Model Question Paper 5: (For Class 11 and 12 and Pre-Medical/Engineering Entrance) **Question 1:** If g is the ratio of specific heats and R is the universal gas constant, then the molar specific heat at constant volume C_v is given by - **(A)** g R - (B) $\frac{(\gamma-1)}{\gamma}$ - (C) $\frac{R}{\gamma-1}$ - (D) $\frac{\gamma R}{\gamma 1}$ ## Answer: (C) **Question 2:** If μ_0 is permeability of free space and \hat{l}_0 is permittivity of free space, the speed of light in vacuum is given by - (A) $\sqrt{\mu_0 \in 0}$ - (B) õ0/€0 - (C) $\sqrt{\frac{1}{\mu_0 \in_0}}$ - (D) √E₀/µ₀ ## Answer : (C) **Question 3:** If an electron and a proton have the same de-Broglie wavelength, then the kinetic energy of the electron is - (A) zero - (B) less than that of a proton - (C) more than that of a proton | (D) equal to that of a proton | |--| | Answer : (C) | | Question 4: If the linear momentum of a body is increased by 50%, then the kinetic energy of that | | body increases by | | (A) 225% | | (B) 25% | | (C) 100% | | (D) 125% | | Answer: (D) | | Question 5: In a Fraunhofer diffraction experiment at a single slit using a light of wavelength 400 nm, | | the first minimum is formed at an angle of 30° . The direction θ of the first secondary maximum is given | | (A) $\sin^{-1} \frac{2}{3}$ (B) $\sin^{-1} \frac{3}{4}$ (C) $\sin^{-1} \frac{1}{4}$ (D) $\tan^{-1} \frac{2}{3}$ | | (B) Sin ⁻¹ 3/4 | | (C) Sin ⁻¹ 1/4 | | (D) Tan ⁻¹ (D) | | Answer : (B) | | Question 6 : In a given direction, the intensities of the scattered light by a scattering substance for two beams of light are in the ratio of 256 : 81. The ratio of the frequency of the first beam to the frequency of the second beam is (A) 64 : 27 | | (B) 2:1 | | (C) 64:127 | | (D) 1:2 | Answer : (D) | Question 7 : In a series resonant R-L-C circuit, the voltage across R is 100 V and the value of R = 1000 W. The capacitance of the capacitor is $2 \cdot 10^{-6}$ F; angular frequency of AC is 200 rad s ⁻¹ . Then the P.D. across the inductance coil is | |--| | (A) 250 V | | (B) 400 V | | (C) 100 V | | (D) 40 V | | Answer: (A) | | Question 8: In an unbiased p-n junction | | (A) Potential at p is more than that at n | | (B) Potential at p is less than that at n | | (C) Potential at p is equal to that at n | | (D) Potential at p is +ve and that at n is -ve | | Answer : (B) | | Question 9: In Young's double slit experiment, a third slit is made in between the double slits. Then (A) intensity of fringes totally disappears. | | (B) only bright light is observed on the screen. | | (C) fringes of unequal width are formed. | | (D) contrast between bright and dark fringes is reduced. | | Answer: (D) | | Question 10 : If a black body emits 0.5 joules of energy per second when it is at 27°C, then the amount of energy emitted by it when it is at 627°C will be | | (A) 40.5 J | | (B) 162 J | | (C) 13.5 J | | (D) 135 J | | Answer : (A) |